Канд. техн. наук А. Н. Корогодская¹, д-р техн. наук Г. Н. Шабанова¹, д-р техн. наук С. М. Логвинков² (¹НТУ «Харьковский политехнический институт», г. Харьков, Украина; ²Харьковский национальный экономический университет имени Семена Кузнеца, г. Харьков, Украина)

Система MéO—SrO—Al₂O₃— основа для получения огнеупорных композиционных материалов

Введение

Трехкомпонентная система MgO—SrO—Al₂O₃ представляет интерес с точки зрения получения на основе ее композиций огнеупорных вяжущих материалов, а также как составляющая многокомпонентных оксидных систем, являющихся основой для разработки неформованных огнеупоров с использованием периклаза в качестве заполнителя. Возможность разработки таких материалов обусловливается наличием в системе фаз, обладающих высокими температурами плавления (до 2000 °C) при одновременном наличии высоких гидравлических свойств, а также устойчивостью к одновременному воздействию высоких температур и коррозионных расплавов [1-3].

Полного субсолидусного строения системы $MgO-SrO-Al_2O_3$ в изученной литературе не обнаружено. Бинарные системы, входящие в состав указанной трехкомпонентной системы, изучены достаточно полно.

Исследования различных авторов выявили, что в системе $SrO-Al_2O_3$ существует 5 термодинамически стабильных соединений: $SrAl_{12}O_{19}$, $SrAl_4O_7$, $SrAl_2O_4$, $Sr_3Al_2O_6$ и $Sr_4Al_2O_7$ [4]. В системе $MgO-Al_2O_3$ существует только одно соединение $MgAl_2O_4$ [5]. По результатам последних исследований в системе $MgO-SrO-Al_2O_3$ существуют два трехкомпонентных соединения $MgSrAl_{10}O_{17}$ и $MgSr_2Al_{22}O_{36}$, что значительно усложняет ее триангуляцию [6; 7].

Целью настоящей работы являлось установление возможности сосуществования в указанной системе стронцийалюминатных фаз, обладающих вяжущими свойствами, с периклазом.

132 ISSN 2225-7748 Збірник наукових праць ПАТ «УКРНДІ ВОГНЕТРИВІВ ІМ. А. С. БЕРЕЖНОГО», 2015, № 115

Термодинамические и геометро-топологические расчеты

На первоначальном этапе расчеты проводились без учета в твердофазных взаимодействиях трехкомпонентных соединений.

Для проведения расчетов по установлению субсолидусного строения системы MgO—SrO— Al_2O_3 были использованы термодинамические данные, приведенные в [8—10].

Термодинамический анализ субсолидусного строения изучаемой трехкомпонентной системы проводился путем сопоставления величины свободной энергии Гиббса в интервале температур 800—2000 К по методике, представленной в [11], для следующих блоков модельных реакций обмена:

блок I:

1) 4SrO + MgAl₂O₄ = Sr₄Al₂O₇ + MgO; 2) 3SrO + MgAl₂O₄ = Sr₃Al₂O₆ + MgO; 3) SrO + MgAl₂O₄ = SrAl₂O₄ + MgO; 4) SrO + 2MgAl₂O₄ = SrAl₄O₇ + 2MgO; 5) SrO + 6MgAl₂O₄ = SrAl₁O₁₉ + 6MgO; **б**лок II: 1) 3Sr₄Al₂O₇ + MgAl₂O₄ = 4Sr₃Al₂O₆ + MgO; 2) Sr₄Al₂O₇ + 3MgAl₂O₄ = 4SrAl₂O₄ + 3MgO; 3) Sr₄Al₂O₇ + 7MgAl₂O₄ = 4SrAl₄O₇ + 7MgO; 4) Sr₄Al₂O₇ + 23MgAl₂O₄ = 4SrAl₄O₇ + 7MgO; 4) Sr₄Al₂O₇ + 23MgAl₂O₄ = 4SrAl₁O₁₉ + 23MgO; **б**лок III: 1) Sr₃Al₂O₆ + 2MgAl₂O₄ = 3SrAl₂O₄ + 2MgO; 2) Sr₃Al₂O₆ + 5MgAl₂O₄ = 3SrAl₄O₇ + 5MgO; 3) Sr₃Al₂O₆ + 17MgAl₂O₄ = 3SrAl₁₂O₁₉ + 17MgO; **б**лок IV:

1) $SrAl_2O_4 + MgAl_2O_4 = SrAl_4O_7 + MgO;$ 2) $SrAl_2O_4 + 5MgAl_2O_4 = SrAl_{12}O_{19} + 5MgO;$ блок V:

1) $SrAl_4O_7 + 4MgAl_2O_4 = SrAl_{12}O_{19} + 4MgO_{19}$

Результаты расчета величины свободной энергии Гиббса в зависимости от температуры представлены в табл. 1.

При анализе реакций блока I установлено, что наиболее выгодно сосуществование $SrA_{12}O_{19}$ и MgO по реакции (I.5). Конкурировать развитию реакции I.5 может только реакция I.4, так как с участием этой реакции может быть составлена линейная комбинация, в частности, (I.5) + 8(I.4), обеспечивающая суммарный механизм взаимодействия:

$$9$$
SrO + 22 MgAl₂O₄ = 8 SrAl₄O₇ + SrAl₁₂O₁₉ + 22 MgO. (1)

Таблица 1

№ ре- акции по	Величина свободной энергии Гиббса, кДж/моль, при температуре, К						
блокам	800	1000	1200	1400	1600	1800	2000
I. 1	-71,41	-80,96	-92,49	-105,54	-119,72	-134,77	-150,45
2	-68,85	-62,41	-55,12	-47,17	-38,67	-29,74	-20,42
3	-35,90	-34,32	-32,42	-30,21	-27,71	-24,92	-21,85
4	75,28	74,66	74,36	74,48	75,11	76,28	78,03
5	-528,51	-541,69	-554,74	-566,94	-577,85	-587,16	-594,61
II. 1	178,83	233,22	296,99	367,94	444,47	525,36	609,65
2	7,81	23,67	42,82	64,69	88,88	115,08	143,03
3	452,53	459,62	463,95	483,48	500,15	519,87	542,57
4	-1962,62	-2005,82	-2046,45	-2082,22	-2111,69	-2133,86	-2147,98
III. 1	-38,85	-40,55	-42,13	-43,46	-44,45	-45,03	-45,14
2	294,69	286,41	278,21	270,63	263,99	258,56	254,51
3	-1516,67	-1562,67	-1609,09	-1653,65	-1694,88	-1731,73	-1763,40
IV. 1	111,18	108,98	106,78	104,69	102,82	101,19	99,84
2	-492,61	-507,37	-522,32	-536,73	-550,14	-562,23	-572,75
V. 1	-603,79	-616,36	-629,10	-641,43	-652,96	-663,43	-672,64

Термодинамическая оценка энергии Гиббса возможных твердофазных реакций в системе $MgO{-\!\!-}SrO{-\!\!-}Al_2O_3$

Значения ΔG для реакции (1) могут быть получены соответствующим алгебраическим суммированием значений ΔG для слагающих реакций (в технологически значимом интервале $\Delta G_{1000} \approx +38 \text{ кДж/моль и } \Delta G_{1500} \approx +27 \text{ кДж/моль)}$ и трехфазная комбинация MgO, SrAl₁₂O₁₉ и SrA₄O₇ менее термодинамически стабильна по отношению к бинарной SrO и MgAl₂O₄.

Отметим, что зависимость $\Delta G = f(T)$ для реакции I.4 очень пологая (изменение значения ΔG в интервале 800—2000 К составляет всего 2,25 кДж/моль) и имеющая размытый минимум между 1200—1300 К. Поэтому дестабилизация комбинации SrAl₁₂O₁₉ и MgO наблюдается для линейных комбинаций типа (1), обеспечивающих реакции типа «2 = 3» (два исходных соединения и три соединения в продуктах взаимодействия), только при высоких значениях коэффициента при реакции I.4 (числа прогона). Это означает, что трехфазная комбинация SrAl₁₂O₁₉, SrAl₄O₇ и MgO становится нестабильной лишь при достаточно высоком содержании в ней SrAl₄O₇ или в геометрической интерпретации: только часть совместных решений, лежащих на линии пересечения прямой между SrO и MgAl₂O₄ с треугольником, объединяющим вершины SrAl₄O₇, MgO и SrAl₁₂O₁₉, отвечает условию термодинамической неустойчивости трехфазной комбинации SrAl₄O₇, MgO и SrAl₁₂O₁₀. Однако и реакция I.5 может участвовать в линейных комбинациях, ответственных за более сложный механизм взаимодействия по реакциям типа «2 = 3», с другим коэффициентом. Очевидно, что трехфазная комбинация в реакциях типа (1) при различных значениях чисел прогона может быть дестабилизирована лишь ниже температуры пересечения зависимостей $\Delta G = f(T)$ для реакций I.4 и I.5. Такая температура по результатам расчетов лежит ниже предельной для рассматриваемого интервала и не имеет технологического значения. Поэтому комбинация SrAl₁₂O₁₀ и MgO может считаться термодинамически стабильной.

Реакции I.1—I.3 также склонны к развитию в прямом направлении, устанавливающем стабильность алюминатов стронция (Sr₄Al₂O₇, Sr₃Al₂O₆ и SrAl₂O₄) в комбинации с периклазом (MgO). Возможное участие этих реакций в линейных комбинациях, обеспечивающих развитие сопряженного взаимодействия типа «2 = 3», указывает на термодинамическую стабильность продуктов взаимодействия при любых числах прогонов реакций I.1—I.3: Sr₄Al₂O₇, MgO и Sr₃Al₂O₆; Sr₃Al₂O₆, MgO и SrAl₂O₄.

Из реакций блока II наиболее вероятной является реакция II.4, конкурировать с которой может лишь реакция II.3. Однако, ситуация с возможностью дестабилизации комбинации SrAl₁₂O₁₉ и MgO аналогична рассмотренной для реакций I.4 и I.5. В отличие от предыдущего случая, полярное сопряжение реакций II.1—II.3 при любых числах прогонов обеспечивает термодинамическую предпочтительность сосуществования в бинарной комбинации $Sr_4Al_2O_7$ и MgAl₂O₄ по сравнению с трехфазными комбинациями Sr₃Al₂O₆, MgO и SrAl₂O₄; SrAl₂O₄, MgO и SrAl₄O₇. Обратим также внимание, что сопряжение реакций I.1 и II.1 обусловливает взаимодействие с образованием стабильно сосуществующих соединений в трехфазных комбинациях $SrO, MgAl_2O_4$ и $Sr_4Al_2O_7$ по сравнению с бинарной комбинацией Sr₃Al₂O₆ и MgO. Аналогична ситуация при сопряжении реакций I.2 и II.1: термодинамически предпочтительно сосуществование SrO, Sr₄Al₂O₇ и MgAl₂O₄ по сравнению с бинарной комбинацией Sr₃Al₂O₆ и MgO.

ISSN 2225-7748 Збірник наукових праць ПАТ «УКРНДІ ВОГНЕТРИВІВ ІМ. А. С. БЕРЕЖНОГО», 2015, № 115 135

Другие варианты сопряжения реакций из блоков I и II могут давать логически непротиворечивые уравнения типа «2 = 3», но между точками составов исходных и конечных продуктов взаимодействия на диаграмме будут содержаться точки составов других соединений. Наличие таких «неучитываемых» соединений указывает на «неэлементарность» взаимодействия, следовательно, полный набор его стадий неадекватен реальному механизму и сопряжение «вырожденное».

При анализе реакций блока III наиболее высока термодинамическая вероятность образования SrAl₁₂O₁₉ и MgO по прямой реакции III.3. Реакция III.2 термодинамически выгодна в обратном направлении протекания, но не может составлять конкуренцию развитию реакции III.3 в связи с изложенным выше. Возможное сопряжение реакций III.1 и III.2 указывает на предпочтительность сосуществования Sr₃Al₂O₆ и MgAl₂O₄ в сравнении с комбинацией фаз $SrAl_2O_4$, $SrAl_4O_7$ и MgO. Сопряжение реакций II.1 и III.1 обеспечивает положительные значения ΔG для всего интервала температур и свидетельствует о стабильности бинарной комбинации Sr₄Al₂O₇ и MgAl₂O₄ в сравнении с трехфазной комбинацией Sr₃Al₂O₆, SrAl₂O₄ и MgO. Реакции II.2 и III.1 могут сопрягаться, температура обратимости суммарного взаимодействия около 1100 К и ниже этой температуры стабильна комбинация $SrAl_2O_4$ и MgO ($\Delta G_{1000} \approx -17$ кДж/моль), а выше — трехфазная комбинация $\mathrm{Sr}_4\mathrm{Al}_2\mathrm{O}_7,\,\mathrm{MgAl}_2\mathrm{O}_4$ и $\mathrm{Sr}_3\mathrm{Al}_2\mathrm{O}_6$ $(\Delta G_{1500} \approx +33 \text{ кДж/моль})$:

$$3Sr_4Al_2O_7 + Sr_3Al_2O_6 + 3MgAl_2O_4 = 7SrAl_2O_4 + 5MgO.$$
 (2)

В блоке реакций IV термодинамическая вероятность развития реакции IV.2 с образованием $SrAl_{12}O_{19}$ и MgO выше, чем реакции IV.1 в конкурентном направлении протекания с образованием $SrAl_2O_4$ и Mg Al_2O_4 .

При анализе блока реакций V сосуществование SrAl₄O₇ и MgAl₂O₄ менее термодинамически выгодно по сравнению со SrAl₁₂O₁₉ и MgO в соответствии с отрицательным значением ΔG реакции V.1. Наиболее важное обстоятельство следует из совместного анализа реакций V.1 и IV.2, так как при любом числе их прогонов бинарная комбинация SrAl₁₂O₁₉ и MgO более термодинамически стабильна в сравнении с трехфазной комбинацией SrAl₄O₇, SrAl₂O₄ и MgO.

Таким образом, при анализе результатов термодинамических расчетов всех модельных твердофазных реакций в системе $MgO{-}SrO{-}Al_2O_3$ не выявлено ни бинарных, ни тройных

комбинаций соединений, которые способны дестабилизировать сосуществование SrAl₁₂O₁₉ и MgO. Наличие конноды SrAl₁₂O₁₉— MgO полностью триангулирует систему MgO—SrO—Al₂O₃ для рассматриваемого случая.

На рис. 1 представлена триангуляция системы без учета наличия в ней тройных соединений, точки составов которых отмечены совместно с геометрически однозначно определяемыми коннодами.

 $Puc.\,1.$ Триангуляция системы MgO—SrO—Al_2O_3 без учета возможного влияния тройных соединений (1— MgSrAl_{10}O_{17}; 2— MgSr_2A_{22}O_{36}) на фазовые равновесия

Наличие в системе $MgO-SrO-Al_2O_3$ трехкомпонентных соединений требует пересмотра ее строения с учетом следующих твердофазных взаимодействий:

блок «0»: 1) MgSrAl₁₀O₁₇ + SrAl₁₂O₁₉ = MgSr₂Al₂₂O₃₆; 2) SrAl₄O₇ + MgAl₂O₄ + 2Al₂O₃ = MgSrAl₁₀O₁₇; 3) 4SrAl₁₂O₁₉ + 5MgO + SrAl₂O₄ = 5MgSrAl₁₀O₁₇; блок VI: 1) MgSrAl₁₀O₁₇ + MgAl₂O₄ = SrAl₁₂O₁₉ + 2MgO; блок VII: 1) MgSr₂Al₂₂O₃₆ + MgAl₂O₄ = 2SrAl₁₂O₁₉ + 2MgO; блок VIII:

1) $MgSrAl_{10}O_{17} + Al_2O_3 = SrAl_{12}O_{19} + MgO;$ блок ІХ: 1) $MgSr_2Al_{22}O_{36} + Al_2O_3 = 2SrAl_{12}O_{19} + MgO;$ блок Х: 1) $4SrO + MgSrAl_{10}O_{17} = 5SrAl_2O_4 + MgO;$ блок XI: 1) $4Sr_4Al_2O_7 + 3MgSrAl_{10}O_{17} = 19SrAl_2O_4 + 3MgO;$ блок XII: 1) $2Sr_{3}Al_{2}O_{6} + MgSrAl_{10}O_{17} = 7SrAl_{2}O_{4} + MgO;$ блок XIII: 1) $3SrAl_2O_4 + MgSrAl_{10}O_{17} = 4SrAl_4O_7 + MgO;$ блок XIV: 1) $3SrAl_4O_7 + MgSrAl_{10}O_{17} = 2SrO + MgSr_2Al_{22}O_{36}$; 2) 23SrAl₄O₇ + 7MgSrAl₁₀O₁₇ = 4Sr₄Al₂O₇ + 7MgSr₂Al₂₂O₃₆; 3) 17SrAl₄O₇ + 5MgSrAl₁₀O₁₇ = 4Sr₃Al₂O₆ + 5MgSr₂Al₂₂O₃₆; 4) $5SrAl_4O_7 + MgSrAl_{10}O_{17} = 4SrAl_2O_4 + MgSr_2Al_{22}O_{36}$.

Результаты расчета свободной энергии Гиббса для блоков представленных реакций приведены в табл. 2.

Таблица 2

Термодинамическая оценка энергии Гиббса возмож	кных твердофазных реакций
в системе MgO—SrO—Al ₂ O ₃ с учетом влияния тре	хкомпонентных соединений

N⁰	Величина свободной энергии Гиббса, кДж/моль, при температуре, К						
реак- ции по блокам	800	1000	1200	1400	1600	1800	2000
0.1	988,98	1140,73	1306,98	1484,12	1669,69	1861,89	2059,32
2	-90,31	-95,33	-100,30	-105,02	-109,34	-113,18	-116,47
3	2303,49	2318,02	2333,86	2350,64	2368,13	2386,16	2404,60
VI. 1	-545,22	-545,07	-547,23	-549,47	-551,66	-553,68	-555,47
VII. 1	-1548,09	-1705,80	-1878,21	-2061,59	-2253,34	-2451,56	-2654,78
VIII. 1	-581,11	-586, 12	-591,48	-597,03	-602,71	-608,43	-614,16
IX. 1	-1569,98	-1726,85	-1898,46	-2081,15	-2272,39	-2470,32	-2673,47
X. 1	-210,22	-194,98	-178,59	-161,59	-144,35	-127,13	-110,14
XI. 1	-488,61	-338,40	-295,46	-183,45	-64,93	57,93	183,97
XII. 1	-144,31	-138,79	-133,18	-127,67	-122,42	-117,50	113,00
XIII.1	387,11	378,23	378,21	378,05	377,76	377,34	376,82
XIV. 1	234,53	375,04	529,15	693,71	866,51	1045,90	1230,62
2	1205, 48	2152,09	3185,35	4284,87	5436, 47	6629,71	7856,46
3	746,67	1476,20	2276,54	3130,93	4027,64	4958,02	5915,33
4	-59,64	89,43	250,75	423,88	605, 46	793,67	907,14

138 ISSN 2225-7748 Збірник наукових праць ПАТ «УКРНДІ ВОГНЕТРИВІВ ІМ. А. С. БЕРЕЖНОГО», 2015, № 115

Существующие в анализируемой системе тройные оксидные соединения $MgSrAl_{10}O_{17}$ и $MgSr_2A_{22}O_{36}$ могут синтезироваться по механизму твердофазных реакций с участием двух исходных оксидов или трех исходных оксидов (блок реакций «0»).

Реакции синтеза с участием двух исходных оксидов указывают на топологическую принадлежность точки состава тройного соединения на отрезке прямой между точками составов исходных оксидов (например, точка состава MgSr₂A₂₂O₃₆ на диаграмме анализируемой системы расположена на отрезке прямой между точками составов MgSrAl₁₀O₁₇ и SrAl₁₂O₁₉, что отвечает реакции 0.1). Термодинамическая вероятность протекания подобных реакций синтеза, как правило, отсутствует, и чаще встречаются случаи вероятного диспропорционирования сложного тройного оксидного соединения на два более простых оксида, что и наблюдается по результатам расчетов $\Delta G = f(T)$ в реакции 0.1 (табл. 2). Термодинамическая вероятность протекания реакций синтеза тройных соединений по более сложному механизму, с участием трех исходных оксидов (реакция 0.2), встречается в практике анализа твердофазных взаимодействий чаще. Такие типы реакций указывают на локализацию тройного соединения внутри треугольника, вершины которого заданы точками составов соответствующих исходных оксидов, а длины отрезков прямых из вершин до точки состава тройного соединения — задают конкретные концентрационные координаты. Анализ реакции 0.3 показывает, что тройное соединение MgSrAl₁₀O₁₇ не образуется внутри треугольника SrAl₁₂O₁₀— $MgO-SrAl_2O_4$, а существование данного треугольника в системе MgO—SrO—Al₂O₃ не вызывает сомнений.

Не противоречат правилу фаз Гиббса и реакции синтеза тройных соединений из четырех исходных оксидов (в тройных системах допустимое число фаз в равновесии отвечает 5), однако механизм подобных взаимодействий не может рассматриваться в качестве адекватного из-за стерической невозможности активного химического соударения сразу четырех типов веществ. Количество всех реакций синтеза тройных соединений в анализируемой системе определяется количеством сочетаний по 2 и по 3 всех лучей, исходящих из точек составов этих соединений, в направлении ко всем простым, бинарным оксидам и другому тройному соединению. Отметим (не вдаваясь в математические вычисления числа сочетаний по 2 и по 3 для числа 10 лучей у каждого тройного соединения), что равновесные фазовые соотношения в субсолидусной области систем и наиболее вероятные

ISSN 2225-7748 Збірник наукових праць ПАТ «УКРНДІ ВОГНЕТРИВІВ ІМ. А. С. БЕРЕЖНОГО», 2015, № 115 139

механизмы образования тройных соединений определяются более сложным видом реакционных взаимодействий — обменными реакциями. Поэтому далее рассматриваются результаты расчетов $\Delta G = f(T)$ для твердофазных реакций обмена.

Прежде всего проверим, сохраняется ли наиболее термодинамически стабильная бинарная комбинация фаз, организующая конноду MgO—SrAl₁₂O₁₉ в варианте триангуляции системы SrO—MgO—Al₂O₃ без учета тройных оксидных соединений. Конкуренцию нестабильности с указанной комбинацией фаз могут давать бинарные сочетания тройных соединений с MgAl₂O₄ или Al₂O₃, а также тройные сочетания: 1) SrAl₄O₁₃, MgAl₂O₄ и MgSrAl₁₀O₁₇; 2) MgSrAl₁₀O₁₇, MgAl₂O₄ и MgSr₂A₂₂O₃₆; 3) MgSr₂A₂₂O₃₆, MgSrAl₁₀O₁₇ и Al₂O₃. Результаты расчетов $\Delta G = f(T)$ для реакций № VI.1, № VII.1, № VIII.1 и № IX.1 указывают на стабильность комбинации SrAl₁₂O₁₉—MgO (табл. 2). Тройная комбинация (3) может быть получена алгебраическим суммированием реакций № V.1 и № VI.1:

$$SrAl_4O_7 + 5MgAl_2O_4 + MgSrAl_{10}O_{17} = 2SrAl_{12}O_{19} + 6MgO.$$
 (3)

Легко видеть, что соответствующее суммирование ΔG обеспечивает их отрицательные значения, то есть SrAl₂O₄ и MgO более термодинамически выгодная комбинация фаз.

Аналогичная ситуация для трехфазной комбинации (4), получаемой алгебраическим суммированием реакций № VI.1 и № VII.1:

 $MgSrAl_{10}O_{17} + 2MgAl_2O_4 + MgSr_2A_{22}O_{36} = 3SrAl_{12}O_{19} + 4MgO.$ (4)

Алгебраическое суммирование реакцией № VIII.1 и № IX.1 дает уравнение:

$$MgSrAl_{10}O_{17} + 2Al_2O_3 + MgSr_2A_{22}O_{36} = 3SrAl_{12}O_{19} + 2MgO.$$
(5)

Направление протекания реакции (5), рассчитанное алгебраическим суммированием соответствующих ΔG , определяется в сторону комбинации SrAl₁₂O₁₉ и **MgO из-за отрицательных зна**чений получаемых величин.

В связи с проверенной стабильностью конноды $SrAl_{12}O_{19}$ — MgO в высокоглиноземистой области анализируемой системы становится безальтернативным (из геометро-топологических принципов триангуляции) существование коннод: $SrAl_{12}O_{19}$ — MgAl₂O₄, MgSr₂A₂₂O₃₆—MgO и MgSrAl₁₀O₁₇—MgO.

Следующей проверке подлежат комбинации фаз MgO с алюминатами стронция в сравнении с комбинациями трой-

Рис. 2. Триангуляция системы MgO—SrO—Al₂O₃ с учетом влияния тройных соединений ($1 - MgSrAl_{10}O_{17}$; $2 - MgSr_2A_{22}O_{36}$) на фазовые равновесия

ных соединений анализируемой системы в сочетании со SrO и алюминатами стронция. Прежде всего проверим стабильность комбинации SrAl₄O₇ и MgO, которая может определять наиболее близко располагающуюся по отношению к тройным соединениям конноду. Значения $\Delta G = f(T)$ для реакции \mathbb{N} XIII.1 указывают на нестабильность комбинации MgO и SrAl₄O₇ по отношению к SrAl₂O₄ и MgSrAl₁₀O₁₇. Реакции № XIV.1—XIV.4 по результатам расчетов (табл. 2) должны протекать в обратном направлении с образованием стабильной комбинации фаз из исходных продуктов взаимодействия: SrAl₄O₇ и MgSrAl₁₀O₁₇. В связи со стабильностью бинарных комбинаций фаз SrAl₂O₄ и MgSrAl₁₀O₁₇, SrAl₄O₇ и MgSrAl₁₀O₁₇ в субсолидусном строении системы MgO-SrO-Al₂O₃ должны существовать соответствующие конноды, определяющие элементарный треугольник SrAl₂O₄—SrAl₄O₇—MgSrAl₁₀O₁₇, что существенно упрощает дальнейшую триангуляцию.

Для дальнейшего определения фазовых равновесий необходимо проверить стабильность комбинации фаз SrAl₂O₄ и MgO, определяемую по реакциям № X.1, № XI.1 и № XII.1. Значения ΔG для этих реакций отрицательны во всем анализируемом интервале температур, что предопределяет стабильность проверяемой комбинации фаз и наличие соответствующей конноды SrAl₂O₄—MgO. Существование коннод Sr₃Al₂O₆—MgO и Sr₄A₂O₇—MgO однозначно следует из геометро-топологических принципов замыкания элементарных треугольников в субсолидусном строении (рис. 2).

Результаты и их обсуждение

Таким образом, субсолидусное строение системы MgO— SrO—Al₂O₃ характеризуется наличием 12 коннод и 11 элементарных треугольников, что согласуется с правилом Курнакова [5].

Топологический граф системы MgO—SrO—Al $_2$ O $_3$ приведен на рис. 3.

Рис. 3. Топологический граф взаимосвязи элементарных треугольников системы MgO—SrO—Al₂O₃

Установлено, что построение графа подчиняется формуле Эйлера [5]. При рассмотрении графа установлено наличие двух «висячих» точек (вершина графа степени 1) — треугольники № 1 и № 11, а также 4 вставных треугольника (вершина графа степени 3), у которых ни одна из трех граней не выходит на стороны концентрационного треугольника — треугольники № 4, 6, 8, 9.

Результаты геометро-топологического анализа треугольников и фаз системы $MgO{-\!\!-}SrO{-\!\!-}Al_2O_3$ приведены в табл. 3 и 4.

Наибольшими площадями существования в системе MgO— SrO—Al₂O₃ обладают треугольники Sr₃Al₂O₆—MgO—SrAl₂O₄ и SrAl₂O₄—MgSrAl₁₀O₁₇—MgO (249,0 и 314,4 ‰ соответственно). Поскольку в субсолидусном строении системы MgO—SrO— Al₂O₃ наиболее гидравлически активный алюминат стронция SrAl₂O₄ не сосуществует со шпинелью, что не позволяет получать на основе данной системы шпинельные цементы, то наибольший интерес представляет треугольник Sr₃Al₂O₆—MgO—SrAl₂O₄, предопределяющий сосуществование основных фаз стронциевых клинкеров с заполнителем периклазом.

Таблица З

		1
№ п/п	Элементарный треугольник	Площадь, ‰
1	$ m SrO-MgO-Sr_4Al_2O_7$	197,4
2	$\rm Sr_4Al_2O_7-MgO-Sr_3Al_2O_6$	49,6
3	$\rm Sr_3Al_2O_6-MgO-SrAl_2O_4$	249,0
4	$SrAl_2O_4$ -Mg $SrAl_{10}O_{17}$ -Mg O	314,4
5	$\rm SrAl_2O_4-MgSrAl_{10}O_{17}-SrAl_4O_7$	10,3
6	$\mathrm{MgSrAl_{10}O_{17}-SrAl_4O_7-MgSr_2Al_{22}O_{36}}$	6,2
7	${\rm SrAl}_4{\rm O}_7{\rm -MgSr}_2{\rm Al}_{22}{\rm O}_{36}{\rm -SrAl}_{12}{\rm O}_{19}$	5,6
8	$\rm MgSrAl_{10}O_{17}-MgSr_2Al_{22}O_{36}-MgO$	11,8
9	$\mathrm{MgSr_{2}Al_{22}O_{36}}\mathrm{-SrAl_{12}O_{19}}\mathrm{-MgO}$	10,9
10	$\rm SrAl_{12}O_{19}-MgO-MgAl_2O_4$	103,8
11	$\mathrm{SrAl}_{12}\mathrm{O}_{19}\mathrm{-MgAl}_{2}\mathrm{O}_{4}\mathrm{-Al}_{2}\mathrm{O}_{3}$	41,0
Сумма Max Min		$ \begin{array}{r} 1000,0 \\ 314,4 \\ 5,6 \end{array} $

Площади элементарных треугольников системы MgO-SrO-Al₂O₃

Таблица 4

Геометро-топологическая характеристика фаз системы MgO—SrO—Al₂O₃

Соединение	Со сколькими фазами сосуществует	В скольких треугольниках существует	Площадь существования, S _i , ‰	Вероятность существования, ω
MgO	8	7	936,9	0,3123
SrO	2	1 197,4		0,0658
Al ₂ O ₃	2	1	41,0	0,0137
MgAl ₂ O ₄	3	4	144,8	0,0483
SrAl ₁₂ O ₁₉	5	4	161,3	0,0538
SrAl ₄ O ₇	4	3	22,1	0,0074
$SrAl_2O_4$	4	3	573,7	0,1912
$Sr_3Al_2O_6$	3	2	298,6	0,0995
$Sr_4Al_2O_7$	3	2	247,0	0,0823
MgSrAl ₁₀ O ₁₇	4	4	342,7	0,1142
MgSr ₂ Al ₂₂ O ₃₆	4	4	34,5	0,0115
Сумма Max Min			3000,0 936,9 22,1	$\begin{array}{c} 1,0000\\ 0,3123\\ 0,0074\end{array}$

Наибольшей вероятностью сосуществования обладают фазы MgO и $\mathrm{SrAl_2O_4}$ (0,3123 и 0,1912 отн. ед. соответственно), что обусловливает стабильность получения композиционных материалов на основе данной конноды.

Заключение

На основании проведенных теоретических исследований установлено сосуществование основных гидравлически активных компонентов стронциевых цементов $SrAl_2O_4$ и $Sr_3Al_2O_6$ с периклазом в качестве огнеупорного заполнителя.

Библиографический список

1. *Мельник М. Т.* Огнеупорные цементы / М. Т. Мельник, Н. Г. Илюха, Н. Н. Шаповалова. — К. : Вища шк., 1984. — 121 с.

2. Кузнецова Т. В. Специальные цементы // Т. В. Кузнецова. — СПб. : Строй-издат, 1997. — 297 с.

3. Alumina cement with spinel / G. N. Shabanova, A. N. Korogodskaya, N. K. Vernigora [et. al.] // 17 International Baustofftagung. 23—36 Sep., 2009. — Tagungsbericht. — Band 1. — Weimar, Bundesrepublik, Deutschland. — Weimar, 2009. — S. 573—578.

4. Thermodynamic Description of SrO–Al₂O₃ System and Comparison with Similar Systems / Y. Xinyu, Zh. Weidong, W. Jingfang [et. al.] // J. Phase Eq. and Diff. -2007. – Vol. 28, \mathbb{N} 4. – P. 362–368.

5. Бережной А. С. Многокомпонентные системы окислов / А. С. Бережной. — К. : Наук. думка, 1970. — 544 с.

6. $Iyi\,N.$ Crystal structure of the new magnetoplumbite-related compound in the system SrO-Al_2O_3-MgO / Iyi N., Goebbels M. // J. Solid State Chem. - 1996. - Vol. 122. - P. 46–52.

7. Patent 6602814 USA. Int. Cl. C 23 C 4/10. Thermal Insulating Material and Method of Producing Same / Gadow R., Schaefer G.; Inventor and Assignee: MTU Aero Engines GmbH, Munich (DE). — № 09/622526; PCT Date Feb. 15, 1999; Date of Patent Aug. 5, 2003.

8. Бабушкин В. И. Термодинамика силикатов / В. И. Бабушкин, Г. М. Матвеев, О. П. Мчедлов-Петросян. — М. : Стройиздат, 1986. — 408 с.

9. Термические константы веществ : справочник : в 9 т. / В. П. Глушко, В. А. Медведева, Г. Н. Бергман [и др.]; под ред. В. П. Глушко. — Т. 9. — М. : Издво АН СССР, 1979. — 574 с.

10. *Корогодская А. Н.* Термодинамическая база данных огнеупорных алюминатов стронция / А. Н. Корогодская, Г. Н. Шабанова // Зб. наук. пр. ПАТ «УКРНДІ ВОГНЕТРИВІВ ІМ. А. С. БЕРЕЖНОГО». — Х. : ПАТ «УКРНДІ ВОГНЕТРИВІВ ІМ. А. С. БЕРЕЖНОГО», 2012. — № 112. — С. 208—213.

11. *Логвинков С. М.* Твердофазные реакции обмена в технологии керамики: монография / С. М. Логвинков. — Х. : ХНЭУ, 2013. — 250 с.

Рецензент канд. техн. наук Гальченко Т. Г.

144 ISSN 2225-7748 Збірник наукових праць ПАТ «УКРНДІ ВОГНЕТРИВІВ ІМ. А. С. БЕРЕЖНОГО», 2015, № 115